Cell volume and monovalent ion transporters: their role in cell death machinery triggering and progression.
نویسندگان
چکیده
Cell death is accompanied by the dissipation of electrochemical gradients of monovalent ions across the plasma membrane that, in turn, affects cell volume via modulation of intracellular osmolyte content. In numerous cell types, apoptotic and necrotic stimuli caused cell shrinkage and swelling, respectively. Thermodynamics predicts a cell type-specific rather than an ubiquitous impact of monovalent ion transporters on volume perturbations in dying cells, suggesting their diverse roles in the cell death machinery. Indeed, recent data showed that apoptotic collapse may occur in the absence of cell volume changes and even follow cell swelling rather than shrinkage. Moreover, side-by-side with cell volume adjustment, monovalent ion transporters contribute to cell death machinery engagement independently of volume regulation via cell type-specific signaling pathways. Thus, inhibition of Na(+)-K(+)-ATPase by cardiotonic steroids (CTS) rescues rat vascular smooth muscle cells from apoptosis via a novel Na(+)i-K(+)i-mediated, Ca(2+)i-independent mechanism of excitation-transcription coupling. In contrast, CTS kill renal epithelial cells independently of Na(+)-K(+)-ATPase inhibition and increased [Na(+)]i/[K(+)]i ratio. The molecular origin of [Na(+)]i/[K(+)]i sensors involved in the inhibition of apoptosis as well as upstream intermediates of Na(+)i/K(+)i-independent death signaling triggered by CTS remain unknown.
منابع مشابه
Changing Roles of Matrix Metalloproteases and Their Inhibitors, TIMPs, During Tumor Progression and Angiogenesis
Inhibition of matrix-metalloproteinases (MMPs) by tissue inhibitors of metalloproteinases (TIMPs) has been shown in vivo to decrease metastasis and tumor-associated angiogenesis. Our laboratory is interested in understanding the role of these proteins at the pericellular microenvironment of tumor and endothelial cells. Secretion of MMPs by tumor cells enables the migration, invasion and metasta...
متن کاملCell volume regulation in epithelial physiology and cancer
The physiological function of epithelia is transport of ions, nutrients, and fluid either in secretory or absorptive direction. All of these processes are closely related to cell volume changes, which are thus an integrated part of epithelial function. Transepithelial transport and cell volume regulation both rely on the spatially and temporally coordinated function of ion channels and transpor...
متن کاملRole of Brg1 in progression of esophageal squamous cell carcinoma
Objective(s): Epigenetic regulation of gene expression can be carried out through chromatin remodeling enzymes such as SWI/SNF. Brg1 also known as SMARCA4 is a catalytic subunit of SWI/SNF, which is necessary for MMPs expression. Matrix metalloproteinases (MMPs) are known as important player enzymes during tumor progression and metastasis. Aberrant epigenetic modification of chromatin should be...
متن کاملThe neuroprotective effect of BSA-based nanocurcumin against 6-OHDA-induced cell death in SH-SY5Y cells
Objective: Parkinson’s disease (PD) is regarded as the second most common neurodegenerative disease affecting elderly population. There is a tendency toward finding natural cures to suppress the initiation and progression of this disease. Some epidemiological studies indicated lower incidence of PD in populations that consume curry. Curcumin, as the main ingredient of turmeric, has been suppose...
متن کاملImpact of Duration and Severity of Persistent Pain on Programmed Cell Death
Programmed cell death is a highly regulated form of cell death, mostly distinguished by the activation of a family of cystein-aspartate proteases (caspases) that cleave various proteins resulting in morphological and biochemical changes characteristic of this form of cell death. Several recent studies have addressed the role of programmed cell death in inflammatory and chronic pain states. Casp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 305 4 شماره
صفحات -
تاریخ انتشار 2013